$\frac{\text { WJEC }}{\text { CBAC }}$

GCE MARKING SCHEME

MATHEMATICS
ASIAdvanced

JANUARY 2012

INTRODUCTION

The marking schemes which follow were those used by WJEC for the January 2012 examination in GCE MATHEMATICS. They were finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conferences were held shortly after the papers were taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conferences was to ensure that the marking schemes were interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conferences, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about these marking schemes.
Unit Page
C1 1
C2 5
C3 10
M1 16
S1 22
FP1 25

Mathematics C1

1. (a)
(i) Gradient of $A B(C D)=$ increase in y increase in x
Gradient of $A B=-2$, gradient of $C D=-2$, (or equivalent, at least one correct) A1
Gradient of $A B=$ gradient of $C D \Rightarrow A B$ and $C D$ are parallel
(c.a.o.) A1
(ii) A correct method for finding the equation of $A B$ using candidate's gradient for $A B$

M1
Equation of $A B: \quad y-14=-2[x-(-5)] \quad$ (or equivalent) (f.t. candidate's gradient for $A B$)
(iii) Use of gradient $L \times$ gradient $A B=-1$
(A correct method for finding the equation of L using) (candidate's gradient for L
(to be awarded only if corresponding M1 is not awarded in part (ii))
Equation of $L: \quad y-8=1 / 2(x-3) \quad$ (or equivalent)
(f.t. candidate's gradient for $A B$) A1

Equation of $L: \quad x-2 y+13=0 \quad$ (convincing) A1

Note: Total mark for part (a) is $\mathbf{8}$ marks

(b) (i) An attempt to solve equations of $A B$ and L simultaneously M1 $x=-1, y=6$
(c.a.o.) A1
(ii) A correct method for finding the coordinates of the mid-point of $A B$
Mid-point of $A B$ has coordinates $(-2,8) \quad$ A1
A correct method for finding the length of $E F \quad$ M1
$E F=\sqrt{ } 5$ (f.t. the candidate's derived coordinates for E and F)
2. (a) $\frac{9+4 \sqrt{ } 2}{5+3 \sqrt{ } 2}=\frac{(9+4 \sqrt{ } 2)(5-3 \sqrt{ } 2)}{(5+3 \sqrt{ } 2)(5-3 \sqrt{ } 2)}$

Numerator: $\quad 45-27 \sqrt{ } 2+20 \sqrt{ } 2-24 \quad$ A1
Denominator: 25-18 A1
$\frac{9+4 \sqrt{2}}{5+3 \sqrt{2}}=3-\sqrt{2} \quad$ (c.a.o.) A1
$5+3 \sqrt{ } 2$

Special case

If M1 not gained, allow B1 for correctly simplified numerator or denominator following multiplication of top and bottom by $5+3 \sqrt{ } 2$
(b) $\sqrt{ } 8 \times \sqrt{ } 10=4 \sqrt{ } 5$
$\frac{\sqrt{ } 90}{\sqrt{ } 2}=3 \sqrt{ } 5$
$\frac{30}{\sqrt{5}}=6 \sqrt{ } 5$
$(\underset{\sqrt{ } 8 \times \sqrt{ } 10)+\sqrt{ } 90}{\sqrt{5}}-\underline{30}=\sqrt{ } 5$
(c.a.o.) B1
3. y-coordinate of $P=7$
$\underline{\mathrm{d} y}=4 x-8$
$\mathrm{d} x$
(an attempt to differentiate, at least one non-zero term correct)
M1
An attempt to substitute $x=3$ in candidate's expression for $\underline{d} y$ m1 $\mathrm{d} x$
Value of $\underline{d y}$ at $P=4$
(c.a.o.) A1
$\mathrm{d} x$
Gradient of normal $=\frac{-1}{\text { candidate's value for } \underline{d y}}$
Equation of normal to C at $P: \quad y-7=-1 / 4(x-3) \quad$ (or equivalent)
(f.t. candidate's value for $\underline{d y}$ and the candidate's derived y-value at $x=3$
$\mathrm{d} x$
provided M1 and both m1's awarded)

(all terms correct B2)
(3 or 4 terms correct B1)
$(x+\underline{3})^{4}=x^{4}+12 x^{2}+54+\underline{108}+\underline{81}$
$(x) x^{2} x^{4}$
(all terms correct B2) (3 or 4 terms correct B1) (- 1 for further incorrect simplification)
(b) ${ }^{n} C_{2} \times 2^{k}=760 \quad(k=1,2) \quad$ M1

Either $2 n^{2}-2 n-760=0$ or $n^{2}-n-380=0$ or $n(n-1)=380 \quad$ A1
$n=20$
(c.a.o.)
5. (a) $a=3$

B1
$b=-1$
B1
$c=2$
(b) An attempt to substitute 1 for x in an appropriate quadratic expression (f.t. candidate's value for b) M1

Maximum value $=1 / 8$ (c.a.o.) A1
6. An expression for $b^{2}-4 a c$, with at least two of a, b, c correct M1
$b^{2}-4 a c=4^{2}-4 \times(k+6) \times(k+3) \quad$ A1
Putting $b^{2}-4 a c<0 \quad \mathrm{~m} 1$
$k^{2}+9 k+14>0 \quad$ (convincing) A1
Finding critical values $k=-7, k=-2$
A statement (mathematical or otherwise) to the effect that
$k<-7$ or $-2<k \quad$ (or equivalent)
(f.t. only critical values of ± 7 and ± 2) B2

Deduct 1 mark for each of the following errors:
the use of non-strict inequalities
the use of the word 'and' instead of the word 'or'
7. (a) $y+\delta y=8(x+\delta x)^{2}-5(x+\delta x)-6$

B1
Subtracting y from above to find δy M1
$\delta y=16 x \delta x+8(\delta x)^{2}-5 \delta x \quad$ A1
Dividing by δx and letting $\delta x \rightarrow 0$ M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\operatorname{limit}_{\delta x \rightarrow 0} \frac{\delta y}{\delta x}=16 x-5$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \times(-1) \times x^{-2}+10 \times \frac{1}{2} \times x^{-1 / 2}$

B1, B1
Attempting to substitute $x=4$ in candidate's expression for $\underline{d y}$ and
$\mathrm{d} x$
putting expression equal to 3
M1
$a=-8$
(c.a.o.) A1
8. (a) Use of $f(3)=35$

M1
27a-63-10 = 35 \Rightarrow (convincing) A1
(b) Attempting to find $f(r)=0$ for some value of r
$f(-2)=0 \Rightarrow x+2$ is a factor A1
$f(x)=(x+2)\left(4 x^{2}+a x+b\right)$ with one of a, b correct \quad M1
$f(x)=(x+2)\left(4 x^{2}-8 x-5\right) \quad$ A1
$f(x)=(x+2)(2 x+1)(2 x-5) \quad$ (f.t. only $4 x^{2}+8 x-5$ in above line) A1

Special case

Candidates who, after having found $x+2$ as one factor, then find one of the remaining factors by using e.g. the factor theorem, are then awarded B1 instead of the final three marks
9. (a)

Concave down curve with y-coordinate of maximum $=3$
B1
x-coordinate of maximum $=1 / 2$
B1
Both points of intersection with x-axis B1
(b)

(i) Concave down curve with x-coordinate of maximum =1 B1

Graph below x-axis and y-coordinate of maximum $=-2 \quad$ B1
(ii) No real roots (f.t. the number of times the
candidate's curve cuts the x-axis) B1
10. (a) $\mathrm{d} y=3 x^{2}-12 x+12$ B1
$\mathrm{d} x$
Putting derived $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
M1
$3(x-2)^{2}=0 \Rightarrow x=2$
A1
$x=2 \Rightarrow y=-1$
(c.a.o) A1
(b) Either:

An attempt to consider value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2^{-}$and $x=2^{+}$ M1
$\underline{\mathrm{d} y}$ has same sign at $x=2^{-}$and $x=2^{+} \Rightarrow(2,-1)$ is a point of inflection $\mathrm{d} x$
Or:
An attempt to find value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ at $x=2, x=2^{-}$and $x=2^{+}$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ at $x=2$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ has different signs at $x=2^{-}$and $x=2^{+}$
$\Rightarrow(2,-1)$ is a point of inflection
Or:
An attempt to find the value of y at $x=2^{-}$and $x=2^{+}$
Value of y at $x=2^{-}<-1$ and value of y at $x=2^{+}>-1 \Rightarrow(2,-1)$ is a point of inflection
Or:
An attempt to find values of $\underline{d^{2} y}$ and $\underline{\mathrm{d}^{3} y}$ at $x=2$
$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$ and $\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}} \neq 0$ at $x=2 \Rightarrow(2,-1)$ is a point of inflection

Mathematics C2

1. 1
$0 \cdot 5$
$1 \cdot 5$
2
$2 \cdot 5$
3
$0 \cdot 674234614$
$0 \cdot 828427124$
$0 \cdot 968564716$
(5 values correct)
B2
$1 \cdot 098076211$ (3 or 4 values correct)
Correct formula with $h=0.5$
$I \approx \frac{0.5}{2} \times\{0.5+1 \cdot 098076211+$
$2(0 \cdot 674234614+0 \cdot 828427124+0 \cdot 968564716)\}$
$I \approx 6 \cdot 540529119 \div 4$
$I \approx 1.63513228$
$I \approx 1 \cdot 635$
(f.t. one slip)

Special case for candidates who put $h=0.4$
10.5
$1 \cdot 4 \quad 0 \cdot 641255848$
$1.8 \quad 0.768691769$
$2 \cdot 2 \quad 0 \cdot 885939445$
$2 \cdot 6 \quad 0 \cdot 995233768$
3 1.098076211 (all values correct) B1
Correct formula with $h=0 \cdot 2$
$I \approx \frac{0 \cdot 4}{2} \times\{0 \cdot 5+1 \cdot 098076211+2(0 \cdot 641255848+0 \cdot 768691769+$
$0.885939445+0$.
$I \approx 8 \cdot 180317871 \div 5$
$I \approx 1 \cdot 636063574$
$I \approx 1 \cdot 636$
(f.t. one slip)

Note: Answer only with no working shown earns 0 marks
2. (a) $10\left(1-\cos ^{2} \theta\right)+7 \cos \theta=5 \cos ^{2} \theta+8$
(correct use of $\sin ^{2} \theta=1-\cos ^{2} \theta$) M1
An attempt to collect terms, form and solve quadratic equation in $\cos \theta$, either by using the quadratic formula or by getting the expression into the form $(a \cos \theta+b)(c \cos \theta+d)$, with $a \times c=$ candidate's coefficient of $\cos ^{2} \theta$ and $b \times d=$ candidate's constant
$15 \cos ^{2} \theta-7 \cos \theta-2=0 \Rightarrow(3 \cos \theta-2)(5 \cos \theta+1)=0$ $\Rightarrow \cos \theta=\underline{2}, \quad \cos \theta=-\underline{1}$ (c.a.o.) A1

35
$\theta=48 \cdot 19^{\circ}, 311 \cdot 81^{\circ}$
B1
$\theta=101 \cdot 54^{\circ}, 258.46^{\circ}$
B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\cos \theta=+,-$, f.t. for 3 marks, $\cos \theta=-,-$, f.t. for 2 marks $\cos \theta=+,+$, f.t. for 1 mark
(b) $x-50=-43^{\circ}, 223^{\circ}, 317^{\circ} \quad$ (at least one value)
$x=7^{\circ}, 273^{\circ}, \quad$ (both values)
Note: Subtract from final 2 marks 1 mark for each additional root in range, ignore roots outside range.
(c) $\sin \phi \leq 1, \cos \phi \leq 1$ and thus $\sin \phi+\cos \phi \leq 2$
3. (a) $1 \times x \times(2 x-3) \times \sin 150^{\circ}=6.75$

2 (substituting the correct values and expressions in the correct places in the area formula) M1
(convincing) A1
$2 x^{2}-3 x-27=0$
An attempt to solve quadratic equation in x, either by using the quadratic formula or by getting the expression into the form $(a x+b)(c x+d)$, with $a \times c=2$ and $b \times d=-27$
$(x+3)(2 x-9)=0 \Rightarrow x=4 \cdot 5$
(c.a.o.) A1
(b) $B C^{2}=4 \cdot 5^{2}+6^{2}-2 \times 4.5 \times 6 \times \cos 150^{\circ}$
(correct use of cos rule, f.t. candidate's derived value for x) M1
$B C=10 \cdot 15 \mathrm{~cm}$
(f.t. candidate's derived value for x) A1
(c) $\frac{1}{2} \times 10.15 \times A D=6.75 \quad$ (f.t. candidate's derived value for $B C$) M1
$A D=1.33 \mathrm{~cm}$
(c.a.o.) A1
4.

5. (a) $S_{n}=a+a r+\ldots+a r^{n-1}$ (at least 3 terms, one at each end) B1
$r S_{n}=a r+\ldots+a r^{n-1}+a r^{n}$
$S_{n}-r S_{n}=a-a r^{n} \quad$ (multiply first line by r and subtract) M1
$(1-r) S_{n}=a\left(1-r^{n}\right)$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
(convincing) A1
(b) $a+a r=25 \cdot 2$ or $\underline{a\left(1-r^{2}\right)}=25 \cdot 2$ B1
($1-r$)
$\frac{a}{1-r}=30$ B1

An attempt to solve the candidate's derived equations simultaneously by eliminating a

M1
$30(1-r)+30(1-r) r=25 \cdot 2 \quad$ (a correct quadratic in r) A1
$r=0 \cdot 4$
(c.a.o.) A1
$a=18 \quad$ (f.t. candidate's value for r provided $r>0$) A1
6.
(a) $4 \times \frac{x^{-2}}{-2}-3 \times \frac{x^{5 / 4}}{5 / 4}+c$
(Deduct 1 mark if no c present)
B1,B1
(b) (i) $\quad 4-x^{2}=0$

M1
$x=-2, x=2 \quad$ (both values, c.a.o.) A1
(ii) Use of integration to find an area
$\int_{j} 4 \mathrm{~d} x=4 x, \int_{j} x^{2} \mathrm{~d} x=\frac{x^{3}}{3} \quad$ B1, B1
Total area $=\int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x-\int_{2}^{3}\left(4-x^{2}\right) \mathrm{d} x$
(subtraction of integrals with correct use of candidate's x_{A}, x_{B} and 3 as limits)
m1

$$
\begin{aligned}
\text { Total area }= & {\left[4 x-(1 / 3) x^{3}\right]_{-2}^{2}-\left[4 x-(1 / 3) x^{3}\right]_{2}^{3} } \\
= & \{[8-(8 / 3)]-[(-8)-(-8 / 3)]\} \\
& -\{[12-9]-[8-(8 / 3)]\}
\end{aligned}
$$

Correct method of substitution of candidate's limits in at least one integral
Total area $=13$
(c.a.o.) A1

Note: Answer only with no working shown earns 0 marks
7. (a) Let $p=\log _{a} x, q=\log _{a} y$

$$
\begin{array}{lrrr}
\text { Then } x=a^{p}, y=a^{q} & \text { (relationship between log and power) } & \text { B1 } \\
x y=a^{p} \times a^{q}=a^{p+q} & \text { (the laws of indices) } & \text { B1 } \\
\log _{a} x y=p+q & \text { (relationship between log and power) } & \\
\log _{a} x y=p+q=\log _{a} x+\log _{a} y & \text { (convincing) } & \text { B1 }
\end{array}
$$

(b) Either:
$(3-5 x) \log _{10} 2=\log _{10} 12$
(taking logs on both sides and using the power law) M1
$x=\underline{3 \log _{10} 2-\log _{10} \underline{12}}$
$5 \log _{10} 2$
$x=-0 \cdot 117$
(f.t. one slip, see below) A1

Or:
$3-5 x=\log _{2} 12 \quad$ (rewriting as a \log equation) M1
$x=\underline{3-\log _{2}} \underline{12} \quad$ A1
$x=-0 \cdot 117$
(f.t. one slip, see below) A1

Note: an answer of $x=0 \cdot 117$ from $x=\underline{\log _{10}} \frac{12-3 \log _{10} \underline{2}}{5 \log ^{2}}$ $5 \log _{10} 2$
earns M1 A0 A1
an answer of $x=1 \cdot 317$ from $x=\underline{\log _{10}} \frac{12+3 \log _{10}}{5 \log _{10} 2} \underline{2}$
earns M1 A0 A1

earns M1 A0 A1

Note: Answer only with no working shown earns 0 marks
(c) (i) $2 \log _{9}(x+1)=\log _{9}(x+1)^{2} \quad$ (power law) B1 $\log _{9}(3 x-1)+\log _{9}(x+4)-\log _{9}(x+1)^{2}$ $=\log _{9}(3 x-1)(x+4) \quad(x+1)^{2}$ (addition law) B1 (subtraction law) B1
(ii) $\quad \log _{9} \frac{(3 x-1)(x+4)}{(x+1)^{2}}=1 / 2 \Rightarrow \frac{(3 x-1)(x+4)}{(x+1)^{2}}=3$
(f.t. candidate's log expression) M1
$x=1 \cdot 4$
(c.a.o.)

A1
8. (a) (i) $\quad A(4,-1)$
$\begin{array}{lll}\text { (ii) } & \text { A correct method for finding radius } & \\ \text { Radius }=\sqrt{ } 50 & \text { (convincing) } & \text { A1 }\end{array}$
(iii) Equation of C : $(x-4)^{2}+(y-[-1])^{2}=50$
(f.t. candidate’s coordinates for A) B1
(b) Either:

An attempt to substitute the coordinates of R in the candidate's equation for C

M1
Verification that L.H.S. of equation of $C=50 \Rightarrow R$ lies on $C \quad$ A1
Or:
An attempt to find $A R^{2}$ M1
$A R^{2}=50 \Rightarrow R$ lies on $C \quad$ A1
(c) Either:
$\begin{array}{lll}R Q=\sqrt{ } 160 & (R P=\sqrt{ } 40) & \text { B1 } \\ \cos P Q R=\frac{\sqrt{ } 160}{2 \sqrt{ } 50} & \left(\sin P Q R=\frac{\sqrt{ } 40}{2 \sqrt{ } 50}\right) & \text { M1 }\end{array}$
$P Q R=26.565^{\circ}$
(f.t. one numerical slip)

Or:
$R Q=\sqrt{ } 160$ and $\quad R P=\sqrt{ } 40 \quad$ (both values) B1
$(\sqrt{ } 40)^{2}=(\sqrt{ } 160)^{2}+(2 \sqrt{ } 50)^{2}-2 \times(\sqrt{ } 160) \times(2 \sqrt{ } 50) \times \cos P Q R$
(correct use of cos rule) M1
$P Q R=26.565^{\circ}$
(f.t. one numerical slip)
9. (a) $\frac{1}{2} \times 5^{2} \times \theta+\frac{1}{2} \times 5^{2} \times \phi=22.5$
$\theta+\phi=1 \cdot 8 \quad$ (convincing)
$\phi=18$ (convincing) A1
(b) $5 \times \theta-5 \times \phi=3.5$ or $5 \times \phi-5 \times \theta=3.5 \quad$ M1
$5 \times \theta-5 \times \phi=3.5 \quad$ (o.e.) A1
An attempt to solve the candidate's two linear equations
simultaneously by eliminating one unknown
$\theta=1 \cdot 25, \phi=0.55 \quad$ (both values)
A1
(f.t. only for $\theta=0.55, \phi=1.25$ from $5 \times \phi-5 \times \theta=3.5$)

Mathematics C3

1.

(a) 0
$\pi / 12$
$\pi / 6$
$\pi / 4$
$\pi / 3$
$-\quad 0.25$
Correct formula with $h=\pi / 12$ (3 or 4 values correct) B1
$I \approx \frac{\pi / 12}{3} \times\{1+0 \cdot 25+4(0 \cdot 933012701+0 \cdot 5)+2(0 \cdot 75)\}$
$I \approx 8.482050804 \times(\pi / 12) \div 3$
$I \approx 0.740198569$
$I \approx 0.7402$
Note: Answer only with no working shown earns 0 marks
(b)

$\int_{0}^{\pi / 3} \sin ^{2} x \mathrm{~d} x=\int_{0}^{\pi / 3} 1 \mathrm{~d} x-\int_{0}^{\pi / 3} \cos ^{2} x \mathrm{~d} x$		M1
$\int_{0}^{\pi / 3} \operatorname{lin}^{2} x \mathrm{~d} x=0.3070$		
\int_{0}	(f.t. candidate's answer to (a))	A1

Note: Answer only with no working shown earns 0 marks
2. (a) e.g. $\theta=\pi / 2, \phi=\pi$
$\sin (\theta+\phi)=-1 \quad$ (choice of θ, ϕ and one correct evaluation) B1
$\sin \theta+\sin \phi=1 \quad$ (both evaluations correct but different) B1
(b) $\sec ^{2} \theta+8=4\left(\sec ^{2} \theta-1\right)+5 \sec \theta$.
(correct use of $\tan ^{2} \theta=\sec ^{2} \theta-1$) M1
An attempt to collect terms, form and solve quadratic equation in sec θ, either by using the quadratic formula or by getting the expression into the form $(a \sec \theta+b)(c \sec \theta+d)$, with $a \times c=$ candidate's coefficient of $\sec ^{2} \theta$ and $b \times d=$ candidate's constant m 1 $3 \sec ^{2} \theta+5 \sec \theta-12=0 \Rightarrow(3 \sec \theta-4)(\sec \theta+3)=0$
$\Rightarrow \sec \theta=\underline{4}, \sec \theta=-3$
3
$\Rightarrow \cos \theta=\frac{3}{4}, \cos \theta=-\frac{1}{3}$
(c.a.o.) A1

$$
\theta=41 \cdot 41^{\circ}, 318 \cdot 59^{\circ}
$$

B1
$\theta=109 \cdot 47^{\circ}, 250 \cdot 53^{\circ}$
B1 B1
Note: Subtract 1 mark for each additional root in range for each branch, ignore roots outside range.
$\cos \theta=+$, - , f.t. for 3 marks, $\cos \theta=-$, - , f.t. for 2 marks $\cos \theta=+,+$, f.t. for 1 mark
3.
(a) (i) candidate's x-derivative $=6 t$,
candidate's y-derivative $=6 t^{5}-12 t^{2}$
(at least two of the three terms correct)
B1
$\underline{\mathrm{d} y}=$ candidate's y-derivative M1
$\mathrm{d} x$ candidate's x-derivative
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{6 t^{5}-12 t^{2}}{6 t}$
(c.a.o.) A1
(ii) $\frac{6 t^{5}-12 t^{2}}{6 t}=\frac{7}{2} \quad$ (f.t. candidate's expression from (i)) M1

	$2 t^{4}-4 t-7=0$
(convincing)	A 1

(b) $\quad f(t)=2 t^{4}-4 t-7$

An attempt to check values or signs of $f(t)$ at $t=1, t=2 \quad$ M1
$f(1)=-9<0, f(2)=17>0$
Change of sign $\Rightarrow f(t)=0$ has root in $(1,2)$
$t_{0}=1 \cdot 6$
$t_{1}=1 \cdot 608861654 \quad\left(t_{1}\right.$ correct, at least 5 places after the point) B1
$t_{2}=1 \cdot 609924568$
$t_{3}=1 \cdot 610051919$
$t_{4}=1 \cdot 610067175=1 \cdot 61007 \quad\left(t_{4}\right.$ correct to 5 decimal places) B1
An attempt to check values or signs of $f(t)$ at $t=1 \cdot 610065$, $t=1.610075$
$f(1 \cdot 610065)=-1.25 \times 10^{-4}<0, f(1 \cdot 610075)=1 \cdot 69 \times 10^{-4}>0$
Change of sign $\Rightarrow \alpha=1 \cdot 61007$ correct to five decimal places
Note: 'Change of sign' must appear at least once.
4. $\quad \underline{d}\left(x^{2} y^{2}\right)=x^{2} \times 2 y \underline{d} y+2 x \times y^{2}$ B1
$\mathrm{d} x \quad \mathrm{~d} x$
$\underline{\mathrm{d}}\left(2 y^{3}\right)=6 y^{2} \times \underline{\mathrm{d} y}$ B1
$\mathrm{d} x \quad \mathrm{~d} x$
$\underline{\mathrm{d}}\left(x^{4}-2 x+6\right)=4 x^{3}-2 \quad$ B1
$\mathrm{d} x$
$x=2, y=3 \Rightarrow \underline{\mathrm{~d}} y=\underline{66}=\underline{11} \quad$ (o.e.) (c.a.o.) B1
$\begin{array}{lll}\mathrm{d} x & 30 & 5\end{array}$
5.
(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{1+(4 x)^{2}}$ or $\frac{1}{1+(4 x)^{2}}$ or $\frac{4}{1+4 x^{2}}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{1+16 x^{2}}$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{\mathrm{x}^{3}} \times f(x) \quad(f(x) \neq 1)$
$\underline{\mathrm{d}} \boldsymbol{y}=3 x^{2} \times \mathrm{e}^{\mathrm{x}^{3}}$ d x
(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{5} \times f(x)+\ln x \times g(x)$
$(f(x), g(x) \neq 1)$
M1
$\frac{\mathrm{d} y}{\mathrm{~d} x}=x^{5} \times f(x)+\ln x \times g(x) \quad$ (either $f(x)=1 / x$ or $\left.g(x)=5 x^{4}\right)$
$\underline{\mathrm{d} y}=x^{4}+5 x^{4} \times \ln x$
(c.a.o.) A1 $\mathrm{d} x$
A1
(b) $\quad \int(5 x+4)^{-1 / 2} \mathrm{~d} x=k \times \frac{(5 x+4)^{1 / 2}}{1 / 2}$
$\int_{1}^{9} 3 \times(5 x+4)^{-1 / 2} \mathrm{~d} x=\left[3 \times \frac{1 / 5}{} \times \frac{(5 x+4)^{1 / 2}}{1 / 2}\right]_{1}^{9}$
A correct method for substitution of limits in an expression of the form $m \times(5 x+4)^{1 / 2}$
$\int_{1}^{9} 3 \times(5 x+4)^{-1 / 2} \mathrm{~d} x=\frac{42}{5}-\frac{18}{5}=\frac{24}{5}=4 \cdot 8$
(f.t. only for solutions of 24 and 120 from $k=1,5$ respectively)

Note: Answer only with no working shown earns 0 marks
7. (a) Trying to solve either $4 x-5 \geq 3$ or $4 x-5 \leq-3$
$4 x-5 \geq 3 \Rightarrow x \geq 2$
$4 x-5 \leq-3 \Rightarrow x \leq \frac{1}{2} \quad$ (solving both inequalities correctly) A1
Required range: $x \leq \frac{1}{2}$ or $x \geq 2$ (f.t. one slip) A1
Alternative mark scheme

$(4 x-5)^{2} \geq 9$	(forming and trying to solve quadratic)	M1
Critical values $x=1 / 2$ and $x=2$	A1	
Required range: $x \leq 1 / 2$ or $x \geq 2$	(f.t. one slip)	A1

(b) $\quad(3|x|+1)^{1 / 3}=4 \Rightarrow 3|x|+1=4^{3} \quad$ M1
$x= \pm 21$
8. (a)

Correct shape, including the fact that the x-axis is an asymptote for $y=f(x)$ at $-\infty$
$y=f(x)$ cuts y-axis at $(0,1)$
(b) (i)

Correct shape, including the fact that $y=-4$ is an asymptote for $y=f(3 x)-4$ at $-\infty$
(ii) $y=f(3 x)-4$ at cuts y-axis at $(0,-3)$ B1
(iii) $\mathrm{e}^{3 x}=4 \Rightarrow 3 x=\ln 4$ M1
$x=0 \cdot 462$ A1

Note: Answer only with no working shown earns M0 A0
9. (a) $y=3-\frac{1}{\sqrt{x}-2} \Rightarrow 3 \pm y= \pm \frac{1}{\sqrt{x}-2} \quad$ (separating variables) M1
$x-2=\frac{1}{(3+y)^{2}}$ or $\frac{1}{(y+3)^{2}} \quad \mathrm{~m} 1$
$-(3 \pm y)^{2} \quad(y \pm 3)^{2}$
(c.a.o.) A1
$f^{-1}(x)=2+\frac{1}{(3-x)^{2}}$
(f.t. one slip) A1
(b) $\quad D\left(f^{-1}\right)=[2 \cdot 5,3)$
[2.5
B1
3)

B1
10. (a) $R(f)=[3+k, \infty)$ B1
(b) $3+k \geq-2$ M1
$k \geq-5(\Rightarrow$ least value of k is -5$)$
(f.t. candidate's $R(f)$ provided it is of form [a, ∞) A1
(c) (i) $g f(x)=(3 x+k)^{2}-6$

B1
(ii) $(3 \times 2+k)^{2}-6=3$
(substituting 2 for x in candidate's expression for $g f(x)$ and putting equal to 3)

M1
Either $k^{2}+12 k+27=0$ or $(6+k)^{2}=9 \quad$ (c.a.o.) A1 $k=-3,-9 \quad$ (f.t. candidate's quadratic in k) A1 $k=-3$
(c.a.o.)

Mathematics M1 January 2012

Q	Solution	Mark	Notes
3 (a)			

Q	Solution	Mark	Notes
4(a)	$\begin{aligned} & \text { Using } s=u t+0.5 a t^{2} \text { with } a=(\pm) 9.8, \\ & u=14.7, s=(\pm) 49 \\ & -49=14.7 t-4.9 t^{2} \\ & t^{2}-3 t-10=0 \\ & (t+2)(t-5)=0 \\ & t=\underline{5 \mathrm{~s}} \end{aligned}$	M1 A1 A1	complete method
4(b)	$\begin{aligned} & \text { Using } v^{2}=u^{2}+2 a s \text { with } u=14.7 \text {, } \\ & a=(\pm) 9.8, s=(\pm) 49 \\ & v^{2}=14.7^{2}+2 \times 9.8 \times 49 \\ & v=\underline{34.3 \mathrm{~ms}^{-1}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \mathrm{ft} t \\ & \mathrm{ft} t \end{aligned}$
5(a)			
	Apply N2L to B $9 g-T=9 a$	M1 A1	$9 g$ and T opposing, dim. correct correct equ, allow -ve a
	Apply N2L to A $T-5 g=5 a$	M1 A1	$5 g$ and T opposing, dim. Correct correct equ consistent With first equation
	Adding $\begin{aligned} & 14 a=4 g \\ & a=\underline{2.8 \mathrm{~ms}^{-2}} \\ & T=\underline{63 \mathrm{~N}} \end{aligned}$	m1 A1 A1	$\begin{array}{\|l\|l\|} \text { cao } \\ \text { cao } \end{array}$
5(b)	Assuming the string to be light allows the tension throughout the string to be constant.	B1	

Q	Solution	Mark	Notes
6(a)	Resolve in 12 N direction $\begin{aligned} X & =12-16 \cos 60^{\circ} \\ & =4 \mathrm{~N} \end{aligned}$ Resolve in 7 N direction $Y=7-16 \cos 30^{\circ}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	
	$\begin{aligned} \text { Resultant } & =\sqrt{(4)^{2}+(-6 \cdot 8565)^{2}} \\ & =\underline{7.938 \mathrm{~N}} \\ \theta & =\tan ^{-1}\left(\frac{6.8565}{4}\right) \\ \theta & =\underline{59.74^{\circ}} \end{aligned}$	M1 A1 M1 A1	cao allow other way up ft X, Y
6(b)	$\begin{aligned} & R=5 g \\ & F==0.1 R(=0.1 \times 5 \times 9.8) \end{aligned}$ N2L applied to particle $7.9-F=5 a$ $a=0.60 \mathrm{~ms}^{-2}$	B1 B1 M1 A1	$\mathrm{ft} R$ dim correct, all forces cao

Mathematics S1 January 2012

Q	Solution	Mark	Notes
1 (a) (b)	$\begin{aligned} & \begin{aligned} \mathrm{P}(3 \text { boys })= & \frac{6}{14} \times \frac{5}{13} \times \frac{4}{12} \text { or }\binom{6}{3} \div\binom{ 14}{3} \\ & =\frac{5}{91}(0.055) \end{aligned} \\ & \begin{aligned} \mathrm{P}(2 \text { boys })= & \frac{6}{14} \times \frac{5}{13} \times \frac{8}{12} \times 3 \text { or }\binom{6}{2} \times\binom{ 8}{1} \div\binom{ 14}{3} \\ & =\frac{30}{91} \end{aligned} \\ & \begin{aligned} \mathrm{P}(\text { More boys }) & =\text { Sum of these probs } \\ & =\frac{35}{91}(5 / 13,0.385) \end{aligned} \end{aligned}$	M1 A1 M1A1 M1 A1	This line need not be seen. FT previous work if first 2 M marks awarded.
2	$\begin{aligned} \mathrm{E}(Y) & =2 \times 5+3=13 \\ \operatorname{Var}(X) & =5 \mathrm{si} \\ \operatorname{Var}(Y) & =4 \times 5=20 \end{aligned}$	$\begin{gathered} \hline \text { M1A1 } \\ \text { B1 } \\ \text { M1A1 } \end{gathered}$	M1 Use of formula, A1 answer. M1 Use of formula, A1 answer.
3(a)(i) (ii) (b)	$\begin{aligned} \mathrm{P}(X=7) & =\binom{10}{7} \times 0.6^{7} \times 0.4^{3} \\ & =0.215 \end{aligned}$ Use of the fact that if X^{\prime} denote the number of times Ben wins, X^{\prime} is $\mathrm{B}(10,0.4)$. We require $\mathrm{P}\left(X^{\prime} \leq 4\right)$ $=0.6331$ $\begin{aligned} \mathrm{P}\left(1^{\text {st }} \text { win on } 4^{\text {th }} \text { game }\right) & =0.4 \times 0.4 \times 0.4 \times 0.6 \\ & =0.0384(24 / 625) \end{aligned}$	M1 A1 M1 m1 A1 M1A1 A1	Accept $0.3823-0.1673$ or $0.8327-0.6177$ Working must be shown. Award m1 for use of adjacent row or column. Working must be shown in (ii). Award M1 for summing probs and further 2 marks if correct. M1 multiplic of relevant probs.
4(a) (b) (c)	$\begin{aligned} \mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) & =\mathrm{P}(\mathrm{~B}) \times \mathrm{P}(\mathrm{~A} \mid \mathrm{B}) \\ & =0.06 \\ \mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\ & =0.54 \\ \mathrm{P}(\mathrm{~B} \mid \mathrm{A}) & =\frac{P(A \cap B)}{P(A)} \\ & =0.15 \end{aligned}$	M1 A1 M1 A1 M1 A1	FT from (a) FT from (a) except if independence assumed.
5(a) (b)	$\begin{aligned} \mathrm{P}(\mathrm{red}) & =\frac{1}{3} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3}+\frac{1}{3} \times 1 \\ & =\frac{2}{3} \\ \mathrm{P}(\mathrm{~A} \mid \mathrm{red}) & =\frac{1 / 9}{2 / 3} \\ & =\frac{1}{6} \text { cao } \end{aligned}$	M1A1 A1 B1B1 B1	M1 Use of Law of Total Prob (Accept tree diagram) Accept Prob $=$ No.of red cards divided by number of cards $=6 / 9$ FT denominator from (a) B1 num, B1 denom

\begin{tabular}{|c|c|c|c|}
\hline Q \& Solution \& Mark \& Notes \\
\hline \begin{tabular}{l}
6(a)(i) \\
(ii) \\
(b)
\end{tabular} \& \[
\begin{aligned}
\mathrm{P}(X=5) \& =\frac{\mathrm{e}^{-3.6} \times 3.6^{5}}{5!} \\
\& =0.138 \\
\mathrm{P}(X<3) \& =\mathrm{e}^{-3.6}\left(1+3.6+\frac{3.6^{2}}{2}\right) \\
\& =0.303 \\
\mathrm{P}(3 \leq X \leq 7) \& =0.9692-0.3027 \text { or } 0.6973-0.0308 \\
\& =0.666 \text { or } 0.667 \quad \text { (cao) }
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { M1A1 } \\
\text { A1 } \\
\text { B1B1 } \\
\text { B1 }
\end{gathered}
\] \& \begin{tabular}{l}
Working must be shown. \\
Working must be shown. Award M1 for two correct terms. \\
B1 for each correct prob.
\end{tabular} \\
\hline \begin{tabular}{l}
7(a) \\
(b) \\
(c)(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{E}(X)= \& 0.1 \times 1+0.1 \times 2+0.2 \times 3+0.2 \times 4+0.4 \times 5 \\
\& =3.7 \\
\mathrm{E}\left(X^{2}\right)= \& 0.1 \times 1+0.1 \times 4+0.2 \times 9+0.2 \times 16+0.4 \times 25 \\
\& =15.5 \\
\operatorname{Var}(\mathrm{X})= \& 15.5-3.7^{2}=1.81 \\
\mathrm{E}\left(\frac{1}{X^{2}}\right)= \& 0.1 \times 1+0.1 \times \frac{1}{4}+0.2 \times \frac{1}{9}+0.2 \times \frac{1}{16} \\
\& +0.4 \times \frac{1}{25} \\
= \& 0.176
\end{aligned}
\] \\
Possibilities are 1,\(5 ; 2,4 ; 3,3\) si
\[
\begin{aligned}
\mathrm{P}(\text { Sum }=6) \& =0.1 \times 0.4 \times 2+0.1 \times 0.2 \times 2+0.2 \times 0.2 \\
\& =0.16
\end{aligned}
\] \\
Possibilities are 1,\(1 ; 2,2 ; 3,3 ; 4,4 ; 5,5 \mathrm{si}\)
\[
\begin{aligned}
\text { Prob } \& =0.1^{2}+0.1^{2}+0.2^{2}+0.2^{2}+0.4^{2} \\
\& =0.26
\end{aligned}
\]
\end{tabular} \& M1
A1
B1
M1A1
M1A1

A1
B1
M1A1
A1
B1
M1

A1 \& | M1 Use of $\Sigma x p_{x .}$ |
| :--- |
| Need not be seen |
| M1 Use of correct formula for variance. |
| M1 Use of correct formula. A1 completely correct. |
| Award M1A0 if 2s are missing |

\hline 8(a)

(b) \& \begin{tabular}{l}
We are given that
$$
\begin{gathered}
16 p(1-p)=2.56 \\
p^{2}-p+0.16=0
\end{gathered}
$$

Solving by a valid method
$$
p=0.2 \text { cao }
$$

Accept finding correct solution by inspection.
$$
\begin{aligned}
\mathrm{E}\left(X^{2}\right) & =\operatorname{Var}(X)+[\mathrm{E}(X)]^{2} \\
& =2.56+3.2^{2} \\
& =12.8
\end{aligned}
$$

 \&

M1

A1

M1

A1

M1

A1

A1

 \&

Award A0 if 0.2 and 0.8 given.

FT on p for $\mathrm{E}(X)$ but not $\operatorname{Var}(X)$.
\end{tabular}

\hline
\end{tabular}

Mathematics FP1 January 2012

\begin{tabular}{|c|c|c|c|}
\hline Q \& Solution \& Mark \& Notes \\
\hline 1 \& \[
\begin{aligned}
\& f(x+h)-f(x)=\frac{1}{(1-x-h)}-\frac{1}{(1-x)} \\
\&=\frac{1-x-1+x+h}{(1-x)(1-x-h)} \\
\&=\frac{h}{(1-x)(1-x-h)} \\
\& f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{h}{h(1-x)(1-x-h)}\right) \\
\&=\frac{1}{(1-x)^{2}} \text { сао }
\end{aligned}
\] \& \[
\begin{gathered}
\text { M1A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { M1 } \\
\text { A1 }
\end{gathered}
\] \& Allow division by \(h\) at any stage. \\
\hline 2 \& \begin{tabular}{l}
EITHER
\[
\begin{gathered}
\frac{1+3 \mathrm{i}}{1+2 \mathrm{i}}=\frac{(1+3 \mathrm{i})(1-2 \mathrm{i})}{(1+2 \mathrm{i})(1-2 \mathrm{i})} \\
\quad=\frac{1+3 \mathrm{i}-2 \mathrm{i}-6 \mathrm{i}^{2}}{1+2 \mathrm{i}-2 \mathrm{i}-4 \mathrm{i}^{2}} \\
\quad=\frac{7+\mathrm{i}}{5}
\end{gathered}
\] \\
Modulus \(=\sqrt{2}\), Argument \(=8.1^{\circ}\), or 0.14 rad \\
OR \\
\(\operatorname{Mod}(1+3 \mathrm{i})=\sqrt{10}, \operatorname{Arg}(1+3 \mathrm{i})=71.57^{\circ}\) or 1.249 \\
\(\operatorname{Mod}(1+2 \mathrm{i})=\sqrt{5}, \operatorname{Arg}(1+2 \mathrm{i})=63.43^{\circ}\) or 1.107 \\
Reqd mod \(=\sqrt{2}\), Reqd arg \(=8.1^{\circ}\) or 0.14 rad
\end{tabular} \& \[
\begin{gathered}
\text { M1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1 } \\
\text { A1A1 } \\
\\
\text { B1B1 } \\
\text { B1B1 } \\
\text { B1B1 }
\end{gathered}
\] \& \begin{tabular}{l}
FT on line above. \\
FT on lines above.
\end{tabular} \\
\hline 3(a)

(b) \& \begin{tabular}{l}
Let the roots be $\alpha, 2 \alpha$

Then
$$
3 \alpha=-\frac{b}{a}, 2 \alpha^{2}=\frac{c}{a}
$$

Eliminating α,
$$
\frac{b^{2}}{9 a^{2}}=\frac{c}{2 a}
$$
$$
a c=\frac{2 b^{2}}{9}
$$
$$
\begin{aligned}
b^{2}-4 a c & =b^{2}-\frac{8}{9} b^{2} \\
& >0
\end{aligned}
$$

Therefore the roots are real.

 \&

M1

A1

M1

A1

M1

A1
\end{tabular} \& Accept other valid methods

\hline
\end{tabular}

Q	Solution	Mark	Notes
6	Putting $n=1$, the formula gives $1 \times 2=1 \times 2 \times 3 / 3$ which is correct so true for $n=1$ Let the formula be true for $n=k$, ie $\sum_{r=1}^{k} r(r+1)=\frac{k(k+1)(k+2)}{3}$ Consider (for $n=k+1$) $\begin{aligned} \sum_{r=1}^{k+1} r(r+1) & =\sum_{r=1}^{k} r(r+1)+(k+1)(k+2) \\ & =\frac{k(k+1)(k+2)}{3}+(k+1)(k+2) \\ & =\frac{(k+1)(k+2)(k+3)}{3} \end{aligned}$ Therefore true for $n=k \Rightarrow$ true for $n=k+1$ and since true for $n=1$, the result is proved by induction.	B1 M1 M1 A1 A1 A1	Award this A1 only if a correct concluding statement is made and the proof is correctly laid out
7(a)	$\begin{aligned} \text { Translation matrix } & =\left[\begin{array}{lll} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{array}\right] \\ \text { Rotation matrix } & =\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \\ \mathbf{T} & =\left[\begin{array}{ccc} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{ccc} 1 & 0 & h \\ 0 & 1 & k \\ 0 & 0 & 1 \end{array}\right] \\ & =\left[\begin{array}{ccc} 0 & 1 & k \\ -1 & 0 & -h \\ 0 & 0 & 1 \end{array}\right] \end{aligned}$	B1 B1 B1	
(b)(i)	$\begin{aligned} & {\left[\begin{array}{ccc} 0 & 1 & k \\ -1 & 0 & -h \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{l} 1 \\ 3 \\ 1 \end{array}\right]=\left[\begin{array}{l} 1 \\ 3 \\ 1 \end{array}\right]} \\ & 3+k=1, \quad-1-h=3 \end{aligned}$	M1 A1 A1	Both correct.
(ii)	The general point on the line is $(\lambda, 3 \lambda+1)$. The image of this point is given by $\begin{aligned} {\left[\begin{array}{l} x \\ y \\ 1 \end{array}\right]=} & {\left[\begin{array}{ccc} 0 & 1 & -2 \\ -1 & 0 & 4 \\ 0 & 0 & 1 \end{array}\right]\left[\begin{array}{c} \lambda \\ 3 \lambda+1 \\ 1 \end{array}\right]=\left[\begin{array}{c} 3 \lambda-1 \\ -\lambda+4 \\ 1 \end{array}\right] } \\ & x=3 \lambda-1, y=-\lambda+4 \end{aligned}$ Eliminating λ, $x+3 y=11$	M1 m1 A1 M1 A1	Allow :- If $(x, y) \rightarrow\left(x^{\prime}, y^{\prime}\right) \quad$ M1 $\begin{array}{cc} x^{\prime}=y-2 & \text { A1 } \\ y^{\prime}=-x+4 & \text { A1 } \end{array}$ Then put $y=3 x+1$ and eliminate x M1A1 FT their h, k

WJEC
$\frac{\text { WJEC }}{\text { CBAC }}$
245 Western Avenue
Cardiff CF5 2YX
Tel No 02920265000
Fax 02920575994
E-mail: exams@wjec.co.uk
website: www.wjec.co.uk

